Association Québécoise de Hockey Simulé - Hunters 

Hunters

GP: 47 | W: 29 | L: 11 | OTL: 7 | P: 65
GF: 181 | GA: 134 | PP%: 21.99% | PK%: 79.14%
GM : Samuel Lachapelle | Morale : 90 | Team Overall : 56
Next Games #717 vs Supreme
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Julien GauthierX100.00884592768650695530476358678572090610
2Martin Kaut (R)X100.00604592806552435430495968668370090590
3Karson Kuhlman (R)X100.00654590805459575130475568658776090590
4Thomas BordeleauX100.00504595804976404930485063508173090560
5Samuel Fagemo (R)X100.00514595786650405130445855658370090550
6Alexander Holtz (R)X100.00524584796351405330446255668168090550
7Matej Blumel (R)X100.00534595766650404730405455508269090540
8Marc Michaelis (R)X100.00504595775850404530405055508875090530
9Cole Reinhardt (R)X100.00504595766650404530405055508370090530
10Dominik SimonX100.00504595775950404530405055508976090530
11Ian MitchellX100.00564589825566425530565469668474090620
12Ronald AttardX100.00504595747170404530405068508475090600
13Tyler Kleven (R)X100.00564592776961404930485063508170090600
14Thomas Harley (R)X100.00504592766970404930485055508172090590
15Carl DahlstromX100.00504595728550404530405055508875090580
16Mac Hollowell (R)X100.00504592814054404930485061508472090570
17Daniel BrickleyX100.00504595756950404530405055508875090570
Scratches
1Arnaud Durandeau (R)X100.00504592785865404530405055508474090530
2Alex FormentonX100.00504595767050404530405055508471090530
3Joshua Ho-SangX100.00504595795350404530405055508774090530
4Jayce HawrylukX100.00504595766250404530405055508774090530
5Hendrix Lapierre (R)X100.00504595785650404530405055508168090520
6Jean-Luc Foudy (R)X100.00504587795250404530405055508067090520
TEAM AVERAGE100.0054459377635542483043525854847209056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mads Sogaard (R)100.0071537689737071707370708273090630
2Alexei Melnichuk (R)100.0070404085656565656565658269090580
Scratches
TEAM AVERAGE100.007147588769686868696868827109061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adam Oates65656565957350CAN604700,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Martin KautHunters (MON)LW2515122711402926116308012.93%1142917.195279300000152161.54%13367001.2602000433
2Alexander HoltzHunters (MON)RW271410249201820119437111.76%842215.6520236000053040.93%2153213111.1400000251
3Jakob PelletierMoncton WildcatsLW125121700021106124308.20%418715.6225714190002122041.18%17146001.8101000311
4Julien GauthierHunters (MON)LW1110515675211167164014.93%523821.672027190000111041.46%41123001.2600001203
5Oskar LindblomMoncton WildcatsLW216713-57530333362418.18%835817.07213331000021057.14%71611000.7301010010
6Samuel FagemoHunters (MON)LW1154911757625101520.00%615814.4211215000020066.67%643001.1401010100
7Ronald AttardHunters (MON)D270992010104362818160.00%2051118.96022339000041000.00%0219000.3500011003
8Karson KuhlmanHunters (MON)C11549360161641101812.20%620718.870110120000131038.89%216148000.8700000140
9Thomas HarleyHunters (MON)D47167955182323784.35%2279616.950110510000481050.00%2619000.1800100233
10Saku MaenalanenMoncton WildcatsRW316760076139137.69%67023.6200005000060025.00%3634001.9800000010
11Kristian ReichelMoncton WildcatsC51563002493311.11%38817.7302214011001040.00%4524001.3500000011
12Thomas BordeleauHunters (MON)RW363369201384211407.14%743612.1300001000000028.57%2199000.2711000132
13Matej BlumelHunters (MON)RW11415-35564175723.53%715313.9700012101101025.00%443000.6500001001
14Tyler KlevenHunters (MON)D18145140161718755.56%2232017.82112430000125000.00%059000.3100000002
15Ian MitchellHunters (MON)D111344206925864.00%522320.29000226000019000.00%0013100.3600000010
16Ty SmithMoncton WildcatsD5022120373010.00%39418.900000400005000.00%035000.4200000001
17Tim BerniMoncton WildcatsD5022220884110.00%810320.7401119000011000.00%008000.3900000100
18Carl DahlstromHunters (MON)D470226401122241470.00%2061012.9900006000000035.71%28416000.0701000022
19Daniel BrickleyHunters (MON)D47022120896260.00%1752311.130001000004000.00%0114000.0800000403
20Mac HollowellHunters (MON)D12011300132320.00%6978.1500000000020040.00%513000.2000000001
21Will ButcherMoncton WildcatsD17000300112000.00%11217.180000000000000.00%011000.0000000000
Team Total or Average4097210017290813524627967822739310.62%195615615.0515173250308112422913139.48%656169178210.5617133212527
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mads SogaardHunters (MON)2011720.9022.7912040056571301010.33332019300
2Collin DeliaMoncton Wildcats44000.9392.0024000813272000.000040012
Team Total or Average2415720.9092.6614440064703373010.33332419312


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex FormentonHunters (MON)LW241999-09-13No195 Lbs6 ft3NoNoNo1RFAPro & Farm5,000,000$0$0$No
Alexander HoltzHunters (MON)RW212002-01-23Yes195 Lbs6 ft0NoNoNo1RFAPro & Farm1,200,000$0$0$No
Alexei MelnichukHunters (MON)G251998-06-29Yes190 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$0$0$No
Arnaud DurandeauHunters (MON)LW241999-01-14Yes185 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$0$0$No
Carl DahlstromHunters (MON)D281995-01-28No229 Lbs6 ft5NoNoNo4UFAPro & Farm900,000$0$0$No
Cole ReinhardtHunters (MON)LW232000-02-01Yes200 Lbs6 ft0NoNoNo2RFAPro & Farm850,000$0$0$No
Daniel BrickleyHunters (MON)D271995-10-12No205 Lbs6 ft3NoNoNo1RFAPro & Farm850,000$0$0$No
Dominik SimonHunters (MON)LW291994-08-08No190 Lbs5 ft11NoNoNo1UFAPro & Farm850,000$0$0$No
Hendrix LapierreHunters (MON)C212002-02-09Yes180 Lbs6 ft0NoNoNo1RFAPro & Farm875,000$0$0$No
Ian MitchellHunters (MON)D241999-01-18No193 Lbs5 ft11NoNoNo2RFAPro & Farm1,000,000$0$0$No
Jayce HawrylukHunters (MON)LW271996-01-01No196 Lbs5 ft11NoNoNo1RFAPro & Farm850,000$0$0$No
Jean-Luc FoudyHunters (MON)C212002-05-13Yes177 Lbs5 ft11NoNoNo5RFAPro & Farm775,000$0$0$No
Joshua Ho-SangHunters (MON)RW261996-10-12No173 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$0$0$No
Julien GauthierHunters (MON)LW251997-10-15No224 Lbs6 ft4NoNoNo1RFAPro & Farm850,000$0$0$No
Karson KuhlmanHunters (MON)C281995-09-26Yes184 Lbs5 ft10NoNoNo3UFAPro & Farm900,000$0$0$No
Mac HollowellHunters (MON)D251998-09-26Yes170 Lbs5 ft9NoNoNo1RFAPro & Farm850,000$0$0$No
Mads SogaardHunters (MON)G222000-12-13Yes196 Lbs6 ft7NoNoNo1RFAPro & Farm850,000$0$0$No
Marc MichaelisHunters (MON)C281995-07-31Yes187 Lbs5 ft11NoNoNo4UFAPro & Farm750,000$0$0$No
Martin KautHunters (MON)LW231999-10-02Yes190 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$0$0$No
Matej BlumelHunters (MON)RW232000-05-31Yes200 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$0$0$No
Ronald AttardHunters (MON)D241999-03-20No208 Lbs6 ft3NoNoNo1RFAPro & Farm1,200,000$0$0$No
Samuel FagemoHunters (MON)LW232000-03-14Yes200 Lbs6 ft0NoNoNo3RFAPro & Farm800,000$0$0$No
Thomas BordeleauHunters (MON)RW212002-01-03No175 Lbs5 ft10NoNoNo3RFAPro & Farm1,200,000$0$0$No
Thomas HarleyHunters (MON)D222001-08-19Yes205 Lbs6 ft3NoNoNo1RFAPro & Farm850,000$0$0$No
Tyler KlevenHunters (MON)D212002-01-10Yes200 Lbs6 ft4NoNoNo2RFAPro & Farm950,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2524.20194 Lbs6 ft11.761,064,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
135122
230122
3Thomas Bordeleau25122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
135122
2Thomas Harley30122
3Carl DahlstromDaniel Brickley25122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
245122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Thomas Harley45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Thomas Harley45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Thomas Harley45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
245122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Thomas Harley45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Thomas Bordeleau, , Thomas Bordeleau
Extra Defensemen
Normal PowerPlayPenalty Kill
Carl Dahlstrom, Daniel Brickley, Carl DahlstromDaniel Brickley,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracudas3300000013581100000021122000000114761.00013223500257675562320478516286017382611327.27%9188.89%044986951.67%44286750.98%37971353.16%1226867948355679333
2Bayou1010000024-21010000024-20000000000000.00023500257675531320478516284481218000.00%6183.33%044986951.67%44286750.98%37971353.16%1226867948355679333
3Chiwawa32100000111011010000024-22200000096340.66711203100257675589320478516289235224311218.18%11554.55%044986951.67%44286750.98%37971353.16%1226867948355679333
4CoolFm22000000835110000004131100000042241.00081422002576755473204785162836121619200.00%8187.50%044986951.67%44286750.98%37971353.16%1226867948355679333
5Farmers1010000046-21010000046-20000000000000.000471110257675547320478516282710431200.00%20100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
6Goons2110000078-11010000024-21100000054120.500711181025767557132047851628601918398225.00%9455.56%044986951.67%44286750.98%37971353.16%1226867948355679333
7Marlies1000010045-1000000000001000010045-110.500481200257675519320478516283718118200.00%3166.67%044986951.67%44286750.98%37971353.16%1226867948355679333
8Marmots211000007611010000024-21100000052320.500713200025767554032047851628672810394125.00%5180.00%044986951.67%44286750.98%37971353.16%1226867948355679333
9Outlaws3020010025-32010010024-21010000001-110.1672460025767555432047851628431419369111.11%7185.71%044986951.67%44286750.98%37971353.16%1226867948355679333
10Predateurs22000000945220000009450000000000041.0009172600257675575320478516285817342114321.43%70100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
11Raptors2200000011380000000000022000000113841.000112132002576755753204785162865264455120.00%20100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
12Saguenéens43001000161062100100063322000000107381.0001632480025767551553204785162813439167312433.33%8187.50%044986951.67%44286750.98%37971353.16%1226867948355679333
13Scorpions2000010168-21000000134-11000010034-120.50061218002576755593204785162859128344250.00%4175.00%044986951.67%44286750.98%37971353.16%1226867948355679333
14Snowbirds3110010010100210001008711010000023-130.5001018280025767558332047851628632335494125.00%10280.00%144986951.67%44286750.98%37971353.16%1226867948355679333
15Spartans2100010013761000010034-111000000103730.750132336002576755733204785162864293648300.00%8537.50%044986951.67%44286750.98%37971353.16%1226867948355679333
16Supreme1000000167-1000000000001000000167-110.50061218002576755383204785162840130192150.00%000.00%044986951.67%44286750.98%37971353.16%1226867948355679333
17Thugs20100010880100000105411010000034-120.500814220025767553532047851628681328237457.14%9188.89%044986951.67%44286750.98%37971353.16%1226867948355679333
18TigersCats1010000005-5000000000001010000005-500.000000002576755173204785162824113915500.00%20100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
Total47241104512181134472396033118366172415501201986830650.69118133451520257675513343204785162812494254437391413121.99%1392979.14%144986951.67%44286750.98%37971353.16%1226867948355679333
20Twins21001000936110000007251000100021141.0009182700257675559320478516283222323210330.00%60100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
21Vandals320010001275100010005412200000073461.0001223350025767551023204785162873201645400.00%8275.00%044986951.67%44286750.98%37971353.16%1226867948355679333
22Vipers3200100014682100100010551100000041361.00014264000257675566320478516287328275010110.00%11281.82%044986951.67%44286750.98%37971353.16%1226867948355679333
23Wolves21100000945110000007161010000023-120.5009162500257675537320478516283011182612216.67%40100.00%044986951.67%44286750.98%37971353.16%1226867948355679333
_Since Last GM Reset47241104512181134472396033118366172415501201986830650.69118133451520257675513343204785162812494254437391413121.99%1392979.14%144986951.67%44286750.98%37971353.16%1226867948355679333
_Vs Conference944001003033-3413000001215-3531001001818090.50030538320257675524132047851628251989815123313.04%29775.86%044986951.67%44286750.98%37971353.16%1226867948355679333
_Vs Division4310000015114211000006512200000096360.750152540102576755118320478516289631345810220.00%17570.59%044986951.67%44286750.98%37971353.16%1226867948355679333

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4765OTL21813345151334124942544373920
All Games
GPWLOTWOTL SOWSOLGFGA
4724114512181134
Home Games
GPWLOTWOTL SOWSOLGFGA
239633118366
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2415512019868
Last 10 Games
WLOTWOTL SOWSOL
600310
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1413121.99%1392979.14%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
320478516282576755
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
44986951.67%44286750.98%37971353.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1226867948355679333


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2023-10-1512Hunters5Saguenéens4WBoxScore
2 - 2023-10-1618Hunters6Chiwawa4WBoxScore
3 - 2023-10-1731Bayou4Hunters2LBoxScore
5 - 2023-10-1948Hunters6Raptors2WBoxScore
6 - 2023-10-2065Twins2Hunters7WBoxScore
7 - 2023-10-2181Hunters6Supreme7LXXBoxScore
8 - 2023-10-2291Snowbirds1Hunters3WBoxScore
9 - 2023-10-23106Hunters2Wolves3LBoxScore
11 - 2023-10-25123Vipers3Hunters4WXBoxScore
12 - 2023-10-26141Hunters6Barracudas2WBoxScore
13 - 2023-10-27150Marmots4Hunters2LBoxScore
15 - 2023-10-29168Hunters5Raptors1WBoxScore
16 - 2023-10-30181Saguenéens2Hunters4WBoxScore
17 - 2023-10-31204Hunters5Marmots2WBoxScore
18 - 2023-11-01211Predateurs3Hunters7WBoxScore
19 - 2023-11-02222Hunters4Vandals2WBoxScore
20 - 2023-11-03244Outlaws3Hunters2LXBoxScore
22 - 2023-11-05263Hunters5Goons4WBoxScore
23 - 2023-11-06276Farmers6Hunters4LBoxScore
24 - 2023-11-07291Hunters10Spartans3WBoxScore
25 - 2023-11-08304Scorpions4Hunters3LXXBoxScore
27 - 2023-11-10322Hunters0Outlaws1LBoxScore
28 - 2023-11-11334Hunters2Snowbirds3LBoxScore
29 - 2023-11-12348Saguenéens1Hunters2WXBoxScore
30 - 2023-11-13366Outlaws1Hunters0LBoxScore
32 - 2023-11-15384Hunters3Chiwawa2WBoxScore
33 - 2023-11-16397Hunters5Saguenéens3WBoxScore
34 - 2023-11-17402Goons4Hunters2LBoxScore
35 - 2023-11-18427CoolFm1Hunters4WBoxScore
36 - 2023-11-19443Hunters4Marlies5LXBoxScore
37 - 2023-11-20455Vipers2Hunters6WBoxScore
39 - 2023-11-22474Hunters0TigersCats5LBoxScore
40 - 2023-11-23482Hunters2Twins1WXBoxScore
41 - 2023-11-24492Barracudas1Hunters2WBoxScore
42 - 2023-11-25518Vandals4Hunters5WXBoxScore
43 - 2023-11-26532Hunters3Thugs4LBoxScore
44 - 2023-11-27548Chiwawa4Hunters2LBoxScore
45 - 2023-11-28555Hunters3Scorpions4LXBoxScore
46 - 2023-11-29577Hunters4CoolFm2WBoxScore
47 - 2023-11-30586Wolves1Hunters7WBoxScore
48 - 2023-12-01603Hunters3Vandals1WBoxScore
49 - 2023-12-02616Thugs4Hunters5WXXBoxScore
51 - 2023-12-04640Hunters5Barracudas2WBoxScore
52 - 2023-12-05648Predateurs1Hunters2WBoxScore
53 - 2023-12-06658Hunters4Vipers1WBoxScore
54 - 2023-12-07679Snowbirds6Hunters5LXBoxScore
56 - 2023-12-09707Spartans4Hunters3LXBoxScore
57 - 2023-12-10717Hunters-Supreme-
58 - 2023-12-11738Husky-Hunters-
59 - 2023-12-12753Hunters-Husky-
60 - 2023-12-13765Grizzlies-Hunters-
62 - 2023-12-15780Hunters-Raptors-
63 - 2023-12-16793Hunters-Warriors-
64 - 2023-12-17804TigersCats-Hunters-
65 - 2023-12-18825Hunters-Bandits-
66 - 2023-12-19834Smirnoff Ice-Hunters-
68 - 2023-12-21859Marmots-Hunters-
70 - 2023-12-23875Hunters-Xpress-
71 - 2023-12-24889Thugs-Hunters-
73 - 2023-12-26911Hunters-Bayou-
74 - 2023-12-27922Spartans-Hunters-
75 - 2023-12-28939Hunters-Rockets-
76 - 2023-12-29951Marlies-Hunters-
77 - 2023-12-30966Hunters-Predateurs-
79 - 2024-01-01986Igloos-Hunters-
81 - 2024-01-031007Supreme-Hunters-
82 - 2024-01-041020Hunters-Wolves-
83 - 2024-01-051034Hunters-Igloos-
84 - 2024-01-061045Xpress-Hunters-
85 - 2024-01-071060Hunters-Chiwawa-
86 - 2024-01-081076Hunters-Farmers-
88 - 2024-01-101084Bayou-Hunters-
Trade Deadline --- Trades can’t be done after this day is simulated!
89 - 2024-01-111105Bandits-Hunters-
91 - 2024-01-131130Twins-Hunters-
92 - 2024-01-141132Hunters-Smirnoff Ice-
95 - 2024-01-171162Raptors-Hunters-
97 - 2024-01-191187Warriors-Hunters-
101 - 2024-01-231213Rockets-Hunters-
102 - 2024-01-241221Hunters-Grizzlies-
105 - 2024-01-271243Scorpions-Hunters-
106 - 2024-01-281250Hunters-Bayou-
107 - 2024-01-291253Hunters-Grizzlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance45,84522,897
Attendance PCT99.66%99.55%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
18 2989 - 99.63% 101,636$2,337,636$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,745,696$ 2,660,000$ 2,555,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,379,628$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,829,454$ 53 30,826$ 1,633,778$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582314102431224252-2841191901101121122-141122201330103130-2777224400624135583817194450568074630200869087611322173013.82%2545976.77%9641131948.60%653135148.33%629125949.96%2188157916275841132562
46472411045121811344723960331183661724155012019868306518133451520257675513343204785162812494254437391413121.99%1392979.14%144986951.67%44286750.98%37971353.16%1226867948355679333
Total Regular Season12955520694340538619642825044122041881665272702531201198314240573411393380159156123278825115812625832571115131918713586117.04%3938877.61%101090218849.82%1095221849.37%1008197251.12%3414244725759391812896