Association Québécoise de Hockey Simulé - Husky 

Husky

GP: 6 | W: 2 | L: 3 | OTL: 1 | P: 5
GF: 20 | GA: 29 | PP%: 31.25% | PK%: 64.71%
GM : René-Karl Poirier | Morale : 90 | Team Overall : 59
Next Games #88 vs Bandits
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Yakov TreninX97.00964878817076935830536380678678090680
2Kasperi KapanenX98.00804588866568806630646964708677090680
3Christian FischerX100.00824588797674975930546379698678090680
4Yegor SharangovichX99.00524589836872916130596484848475090670
5Parker Kelly (R)X100.00995477776153664830445179508371090610
6Jansen Harkins (R)X100.00624580796854405430476165668573090590
7Sean Couturier (C)X96.00504595747850404530405055509178090540
8Dmitrij JaskinX100.00504595737850404530405055509077090540
9Alexandre Texier (A)X100.00504595786150404530405055508471090530
10Michael SgarbossaX99.00504595785650404530405055509178090530
11Nikolay GoldobinX100.00504595766250404530405055508875090530
12Oliver Ekman-LarssonX98.00704584866584656230705564699185090690
13Austin Strand (R)X96.00514592747452404530405058508674090580
14Jake GardinerX100.00504595756650404530405055509380090570
15Xavier OuelletX100.00504595766050404530405055509077090570
16Ryan MurphyX100.00504595785150404530405055509077090560
17Robbie RussoX100.00504595775550404530405055509077090560
Scratches
1Filip ChlapikX100.00504595776750404530405055508673090530
2MacKenzie MacEachernX100.00504595776750404530405055508976090530
3Jayden Halbgewachs (R)X100.00504595804050404530405055508673090520
4Semyon Der-Arguchintsev (R)X100.00504595794850404530405055508269090520
TEAM AVERAGE99.1959469178645652493045546156877609058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kaapo Kahkonen98.0072718891707572757070708681090660
2Mads Sogaard (R)100.0071537689737071707370708273090630
Scratches
1Chris Driedger100.0070404090656565656565658780090590
TEAM AVERAGE99.337155689069706970696868857809063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill65656565847872CAN5021,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Yakov TreninHusky (MTL)LW6448-1602082415916.67%513622.78112310101290038.24%3487001.1700000110
2Christian FischerHusky (MTL)RW6358-16010121471321.43%511819.68112210000080021.05%1923001.3500000110
3Kasperi KapanenHusky (MTL)RW6257-44010122062010.00%511719.61123410112180140.00%1035001.1900000110
4Yegor SharangovichHusky (MTL)LW6246-440811186811.11%411318.9011219000080014.29%717001.0600000001
5Jansen HarkinsHusky (MTL)LW6505-300682241622.73%19616.1300001000081030.77%1373011.0300000100
6Michael SgarbossaHusky (MTL)C6224-4004461233.33%110517.5400019000011039.34%6122000.7600000001
7Oliver Ekman-LarssonHusky (MTL)D60440601699640.00%714624.3402211301119000.00%049000.5500000001
8Dmitrij JaskinHusky (MTL)RW6033-3551075030.00%19315.5000011000000035.19%5442000.6500001000
9Sean CouturierHusky (MTL)C5112-2204872614.29%210220.4910148000020035.79%9514000.3900000000
10Austin StrandHusky (MTL)D6011120499240.00%714524.28011013000010000.00%003000.1400000000
11Ryan MurphyHusky (MTL)D6011-400054210.00%49315.640000000004000.00%005000.2100000000
12Xavier OuelletHusky (MTL)D6011-4006107320.00%412520.900000900001200100.00%118000.1600000000
13Robbie RussoHusky (MTL)D6011-455345110.00%59315.560000000004000.00%007000.2100001000
14Filip ChlapikHusky (MTL)C11011001320050.00%01919.4500002000000044.44%2700001.0300000000
15Jake GardinerHusky (MTL)D6000-400147020.00%512020.1300009000011000.00%003000.0000000000
16Parker KellyHusky (MTL)RW6000-420131013460.00%18814.6700001000000050.00%226000.0000000000
17Alexandre TexierHusky (MTL)LW6000-100213200.00%0386.390000000001000.00%121000.0000000000
18Nikolay GoldobinHusky (MTL)RW6000-120220000.00%0366.1100002000000011.11%902000.0000000000
Team Total or Average102203252-424410120127175619711.43%57179017.5658131711522441002135.44%3333777010.5800002433
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kaapo KahkonenHusky (MTL)62310.8664.15347002417989000.000060000
2Mads SogaardHusky (MTL)10000.66715.7919005155000.000006000
Team Total or Average72310.8514.74367002919494000.000066000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexandre TexierHusky (MTL)LW241999-09-13No186 Lbs6 ft1NoNoNo4RFAPro & Farm1,200,000$0$0$No
Austin StrandHusky (MTL)D261997-02-17Yes215 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$0$0$No
Chris DriedgerHusky (MTL)G291994-05-18No208 Lbs6 ft4NoNoNo4UFAPro & Farm850,000$0$0$No
Christian FischerHusky (MTL)RW261997-04-15No212 Lbs6 ft2NoNoNo3RFAPro & Farm1,025,000$0$0$No
Dmitrij JaskinHusky (MTL)RW301993-03-23No216 Lbs6 ft2NoNoNo3UFAPro & Farm800,000$0$0$No
Filip ChlapikHusky (MTL)C261997-06-03No194 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$No
Jake GardinerHusky (MTL)D331990-07-04No203 Lbs6 ft2NoNoNo2UFAPro & Farm900,000$0$0$No
Jansen HarkinsHusky (MTL)LW261997-05-23Yes197 Lbs6 ft2NoNoNo1RFAPro & Farm925,000$0$0$No
Jayden HalbgewachsHusky (MTL)LW261997-03-22Yes160 Lbs5 ft8NoNoNo2RFAPro & Farm750,000$0$0$No
Kaapo KahkonenHusky (MTL)G271996-08-16No217 Lbs6 ft2NoNoNo1RFAPro & Farm1,500,000$0$0$No
Kasperi KapanenHusky (MTL)RW271996-07-23No194 Lbs6 ft1NoNoNo1RFAPro & Farm1,750,000$0$0$No
MacKenzie MacEachernHusky (MTL)LW291994-03-09No193 Lbs6 ft2NoNoNo4UFAPro & Farm800,000$0$0$No
Mads SogaardHusky (MTL)G222000-12-13Yes196 Lbs6 ft7NoNoNo3RFAPro & Farm1,025,000$0$0$No
Michael SgarbossaHusky (MTL)C311992-07-25No179 Lbs6 ft0NoNoNo2UFAPro & Farm800,000$0$0$No
Nikolay GoldobinHusky (MTL)RW271995-10-07No196 Lbs5 ft11NoNoNo1RFAPro & Farm800,000$0$0$No
Oliver Ekman-LarssonHusky (MTL)D321991-07-17No200 Lbs6 ft2NoNoNo4UFAPro & Farm2,500,000$0$0$No
Parker KellyHusky (MTL)RW241999-05-14Yes190 Lbs6 ft0NoNoNo3RFAPro & Farm900,000$0$0$No
Robbie RussoHusky (MTL)D291993-10-12No189 Lbs6 ft0NoNoNo2UFAPro & Farm800,000$0$0$No
Ryan MurphyHusky (MTL)D291993-10-12No185 Lbs5 ft11NoNoNo2UFAPro & Farm800,000$0$0$No
Sean CouturierHusky (MTL)C301992-12-07No211 Lbs6 ft3NoNoNo1UFAPro & Farm7,000,000$0$0$No
Semyon Der-ArguchintsevHusky (MTL)C232000-09-15Yes173 Lbs5 ft10NoNoNo4RFAPro & Farm800,000$0$0$No
Xavier OuelletHusky (MTL)D301993-07-29No199 Lbs6 ft0NoNoNo2UFAPro & Farm900,000$0$0$No
Yakov TreninHusky (MTL)LW261997-01-13No201 Lbs6 ft2NoNoNo3RFAPro & Farm1,500,000$0$0$No
Yegor SharangovichHusky (MTL)LW251998-06-06No196 Lbs6 ft2NoNoNo1RFAPro & Farm2,000,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2427.38196 Lbs6 ft12.461,330,208$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Yakov TreninSean CouturierKasperi Kapanen35122
2Yegor SharangovichMichael SgarbossaChristian Fischer30122
3Jansen HarkinsDmitrij JaskinParker Kelly25122
4Alexandre TexierYakov TreninDmitrij Jaskin10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Oliver Ekman-LarssonAustin Strand35122
2Xavier OuelletJake Gardiner30122
3Robbie RussoRyan Murphy25122
4Oliver Ekman-LarssonAustin Strand10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Yakov TreninSean CouturierKasperi Kapanen55122
2Yegor SharangovichMichael SgarbossaChristian Fischer45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Oliver Ekman-LarssonAustin Strand55122
2Xavier OuelletJake Gardiner45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Yakov TreninKasperi Kapanen55122
2Christian FischerYegor Sharangovich45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Oliver Ekman-LarssonAustin Strand55122
2Xavier OuelletJake Gardiner45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Yakov Trenin55122Oliver Ekman-LarssonAustin Strand55122
2Kasperi Kapanen45122Xavier OuelletJake Gardiner45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Yakov TreninKasperi Kapanen55122
2Christian FischerYegor Sharangovich45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Oliver Ekman-LarssonAustin Strand55122
2Xavier OuelletJake Gardiner45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Yakov TreninSean CouturierKasperi KapanenOliver Ekman-LarssonAustin Strand
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Yakov TreninSean CouturierKasperi KapanenOliver Ekman-LarssonAustin Strand
Extra Forwards
Normal PowerPlayPenalty Kill
Nikolay Goldobin, Parker Kelly, Jansen HarkinsNikolay Goldobin, Parker KellyJansen Harkins
Extra Defensemen
Normal PowerPlayPenalty Kill
Robbie Russo, Ryan Murphy, Xavier OuelletRobbie RussoRyan Murphy, Xavier Ouellet
Penalty Shots
Yakov Trenin, Kasperi Kapanen, Christian Fischer, Yegor Sharangovich, Parker Kelly
Goalie
#1 : Kaapo Kahkonen, #2 : Mads Sogaard


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bandits10100000310-710100000310-70000000000000.000369007472295948541441102424200.00%7528.57%04312035.83%4111834.75%348838.64%104491495511458
2CoolFm1010000034-1000000000001010000034-100.00036900747236594854142894225240.00%2150.00%04312035.83%4111834.75%348838.64%104491495511458
3Igloos10001000431000000000001000100043121.0004590074721859485414305419100.00%20100.00%24312035.83%4111834.75%348838.64%104491495511458
Total603021002029-920100100614-8402020001415-150.41720325200747217559485414194574412116531.25%17664.71%24312035.83%4111834.75%348838.64%104491495511458
5Wolves1000010034-11000010034-10000000000010.500358007472275948541428116104125.00%30100.00%04312035.83%4111834.75%348838.64%104491495511458
6Xpress2010100078-1000000000002010100078-120.50071017007472655948541467226464250.00%30100.00%04312035.83%4111834.75%348838.64%104491495511458
_Since Last GM Reset603021002029-920100100614-8402020001415-150.41720325200747217559485414194574412116531.25%17664.71%24312035.83%4111834.75%348838.64%104491495511458
_Vs Conference503020001725-810100000310-7402020001415-140.40017274400747214859485414166463811112433.33%14657.14%24312035.83%4111834.75%348838.64%104491495511458
_Vs Division503020001725-810100000310-7402020001415-140.40017274400747214859485414166463811112433.33%14657.14%24312035.83%4111834.75%348838.64%104491495511458

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
65L1203252175194574412100
All Games
GPWLOTWOTL SOWSOLGFGA
60321002029
Home Games
GPWLOTWOTL SOWSOLGFGA
2010100614
Visitor Games
GPWLOTWOTL SOWSOLGFGA
40220001415
Last 10 Games
WLOTWOTL SOWSOL
032100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
16531.25%17664.71%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
594854147472
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
4312035.83%4111834.75%348838.64%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
104491495511458


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2024-04-067Bandits10Husky3LBoxScore
2 - 2024-04-0713Husky4Xpress3WXBoxScore
4 - 2024-04-0936Husky4Igloos3WXBoxScore
5 - 2024-04-1044Husky3Xpress5LBoxScore
7 - 2024-04-1260Wolves4Husky3LXBoxScore
8 - 2024-04-1376Husky3CoolFm4LBoxScore
9 - 2024-04-1488Bandits-Husky-
11 - 2024-04-16114Smirnoff Ice-Husky-
13 - 2024-04-18131Hunters-Husky-
15 - 2024-04-20152Husky-Hunters-
16 - 2024-04-21162Husky-Goons-
17 - 2024-04-22171Goons-Husky-
18 - 2024-04-23189Husky-Igloos-
20 - 2024-04-25207Igloos-Husky-
21 - 2024-04-26224TigersCats-Husky-
22 - 2024-04-27232Husky-Bandits-
24 - 2024-04-29254Husky-Marmots-
25 - 2024-04-30265Husky-Vipers-
26 - 2024-05-01276Snowbirds-Husky-
28 - 2024-05-03294Husky-Barracudas-
29 - 2024-05-04306Farmers-Husky-
31 - 2024-05-06328Vandals-Husky-
32 - 2024-05-07341Husky-Xpress-
34 - 2024-05-09359Marmots-Husky-
35 - 2024-05-10377Chiwawa-Husky-
37 - 2024-05-12394Husky-Predateurs-
38 - 2024-05-13404Husky-CoolFm-
40 - 2024-05-15418Vipers-Husky-
42 - 2024-05-17441Husky-Snowbirds-
43 - 2024-05-18449Hunters-Husky-
44 - 2024-05-19469Husky-Igloos-
45 - 2024-05-20482Wolves-Husky-
46 - 2024-05-21492Husky-Chiwawa-
47 - 2024-05-22505Husky-Farmers-
49 - 2024-05-24525Spartans-Husky-
51 - 2024-05-26544Husky-Twins-
52 - 2024-05-27554Scorpions-Husky-
54 - 2024-05-29579Bandits-Husky-
55 - 2024-05-30589Husky-Thugs-
57 - 2024-06-01602Husky-Bandits-
58 - 2024-06-02616Predateurs-Husky-
60 - 2024-06-04639Supreme-Husky-
62 - 2024-06-06653Husky-Outlaws-
63 - 2024-06-07666Husky-Warriors-
64 - 2024-06-08678Marlies-Husky-
66 - 2024-06-10697Twins-Husky-
67 - 2024-06-11712Husky-Marlies-
68 - 2024-06-12731CoolFm-Husky-
69 - 2024-06-13741Husky-Bayou-
70 - 2024-06-14752Husky-Spartans-
72 - 2024-06-16770Thugs-Husky-
73 - 2024-06-17793Grizzlies-Husky-
74 - 2024-06-18804Husky-Smirnoff Ice-
75 - 2024-06-19819Husky-Wolves-
77 - 2024-06-21831Xpress-Husky-
78 - 2024-06-22854Husky-Grizzlies-
79 - 2024-06-23865Husky-TigersCats-
81 - 2024-06-25875Raptors-Husky-
83 - 2024-06-27894Saguenéens-Husky-
85 - 2024-06-29917Rockets-Husky-
87 - 2024-07-01938CoolFm-Husky-
88 - 2024-07-02953Husky-Scorpions-
Trade Deadline --- Trades can’t be done after this day is simulated!
90 - 2024-07-04968Husky-Supreme-
91 - 2024-07-05983Barracudas-Husky-
93 - 2024-07-071002Husky-Raptors-
94 - 2024-07-081013Outlaws-Husky-
95 - 2024-07-091029Husky-Hunters-
96 - 2024-07-101041Husky-Goons-
98 - 2024-07-121052Xpress-Husky-
100 - 2024-07-141074Husky-Rockets-
101 - 2024-07-151080Warriors-Husky-
103 - 2024-07-171098Husky-Vandals-
104 - 2024-07-181103Husky-Saguenéens-
105 - 2024-07-191116Igloos-Husky-
108 - 2024-07-221145Bayou-Husky-
111 - 2024-07-251168Goons-Husky-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance3,9952,000
Attendance PCT99.88%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
36 2998 - 99.92% 101,895$203,790$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
296,816$ 3,192,500$ 3,192,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 226,016$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,668,220$ 105 37,102$ 3,895,710$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582303803335272306-3441161901221138152-1441141902114134154-208027246073212511001159226856577791144234077159812402384217.65%2527769.44%4638147743.20%697151146.13%582133843.50%1826120219056421233607
46824032045102972811641181802210150150041221402300147131169529751881522521201205214149279983122223475576211682386426.89%2606375.77%8715137352.08%748152249.15%674129352.13%1913129218046311225607
47603021002029-920100100614-8402020001415-1520325200747217559485414194574412116531.25%17664.71%24312035.83%4111834.75%348838.64%104491495511458
Total Regular Season170707309945589616-2784343803531294316-2286363506414295300-5180589101015993411022424216458411161624179680476815831404252949211122.56%52914672.40%141396297047.00%1486315147.16%1290271947.44%384525443859132925731273