Association Québécoise de Hockey Simulé - Husky 

Husky

GP: 46 | W: 26 | L: 18 | OTL: 2 | P: 54
GF: 174 | GA: 152 | PP%: 26.92% | PK%: 76.47%
GM : René-Karl Poirier | Morale : 90 | Team Overall : 58
Next Games #722 vs Twins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Parker Kelly (R)X99.00995477776153664830445179508371090610
2Jansen Harkins (R)X100.00624580796854405430476165668573090590
3Carl SoderbergX95.00504595787750404530405055509586090550
4Sean Couturier (C)X100.00504595747850404530405055509178090540
5Filip ChlapikX100.00504595776750404530405055508673090530
6Ryan MurphyX100.00504595785150404530405055509077090560
7Robbie RussoX100.00504595775550404530405055509077090560
Scratches
1Ryan Johansen (A)X100.00664579828179666689646856869083090690
2Yakov TreninX100.00964878817076935830536380678678090680
3Kasperi KapanenX99.00804588866568806630646964708677090680
4Dmitrij JaskinX93.60504595737850404530405055509077090540
5Alexandre Texier (A)X100.00504595786150404530405055508471090530
6Michael SgarbossaX100.00504595785650404530405055509178090530
7Nikolay GoldobinX100.00504595766250404530405055508875090530
8MacKenzie MacEachernX100.00504595776750404530405055508976090530
9Jayden Halbgewachs (R)X100.00504595804050404530405055508673090520
10Semyon Der-Arguchintsev (R)X100.00504595794850404530405055508269090520
11Brandon Gignac (R)X100.00504595795050404530405055508673090520
12Oliver Ekman-LarssonX100.00704584866584656230705564699185090690
13Viktor SvedbergX100.00504595719650404530405055509279090590
14Austin Strand (R)X100.00514592747452404530405058508674090580
15Jake GardinerX100.00504595756650404530405055509380090570
16Xavier OuelletX100.00504595766050404530405055509077090570
17Brady Keeper (R)X100.00504595766350404530405055508774090570
TEAM AVERAGE99.4257469178655547493244535855887609057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Keith Kinkaid99.0070506085707070707070709380090630
2Chris Driedger100.0070404090656565656565658780090590
Scratches
1Braden Holtby100.0070404090656565656565659284090590
TEAM AVERAGE99.677043478867676767676767918109060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill65656565847872CAN4931,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan JohansenHusky (MTL)C28233962241404062129437717.83%1763322.6429118570221543167.33%7043120121.9600000734
2Kasperi KapanenHusky (MTL)RW25212546171005126110437719.09%1048319.36481217591013503134.29%1053421011.9000000472
3Yakov TreninHusky (MTL)LW271892710300613193324219.35%1654220.1042612581015392341.86%432229011.0000000322
4Jansen HarkinsHusky (MTL)LW2817926-82002824109315915.60%1146716.6842614481011245135.29%342717001.1100000233
5Oliver Ekman-LarssonHusky (MTL)D27617237201038289945376.06%3767525.033692063000370200.00%01837100.6800002111
6Parker KellyHusky (MTL)RW2910919-74115432762324116.13%2252418.0932512530001390035.14%371027000.7200002132
7Carl SoderbergHusky (MTL)C3141519-840233335121811.43%954617.632357600001201145.69%418612000.7000000110
8Dmitrij JaskinHusky (MTL)RW449817-260373462183114.52%1568315.530002230000150044.00%251115000.5000000311
9Sean CouturierHusky (MTL)C3641014-110030384522308.89%955915.551235260000121037.60%3831416000.5000000004
10Nate SchmidtMontreal CanadiensD194101484013305520327.27%2543022.642241439000038010.00%0614000.6500000141
11Austin StrandHusky (MTL)D39281085512351712711.76%2172018.48213649000059000.00%0135000.2800010001
12Alexandre TexierHusky (MTL)LW1463982011123572117.14%1121815.59101470001151033.33%1577000.8200000012
13MacKenzie MacEachernHusky (MTL)LW25459120151528112014.29%1134013.64011421000090051.85%27414000.5300000013
14Xavier OuelletHusky (MTL)D31358-2601022175717.65%2653417.232024260000251075.00%4535000.3000000100
15Michael SgarbossaHusky (MTL)C19336-220882371113.04%41899.9800002000031038.33%12043000.6300000000
16Nikolay GoldobinHusky (MTL)RW172462201515308156.67%526715.7201113000000147.83%23136000.4500000000
17Robbie RussoHusky (MTL)D261341405651420.00%82258.66000150000100025.00%418000.3600000010
18Jayden HalbgewachsHusky (MTL)LW1012310055156146.67%715415.4900004000020050.00%485000.3900000001
19Filip ChlapikHusky (MTL)C8303-30065194715.79%613717.1410111000000048.98%4923000.4400000000
20Brady KeeperHusky (MTL)D44022-1400192017670.00%3070516.03000220000043000.00%0234000.0600000000
21Jake GardinerHusky (MTL)D27011-11205157140.00%1938814.3700002000030050.00%2117000.0500000000
22Semyon Der-ArguchintsevHusky (MTL)C7011200165120.00%37310.4600000000070042.86%2122000.2700000000
23Ryan MurphyHusky (MTL)D16000-100198120.00%621013.13000080000110050.00%239000.0000000000
24Viktor SvedbergHusky (MTL)D3000100144420.00%87926.42000160000900100.00%124000.0000000000
Team Total or Average5801411883292117430478510102937256713.70%336979116.883139701356493251656820950.32%2021234390240.6700014242827
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Keith KinkaidHusky (MTL)23131000.8733.6113782183654330100.00002320000
Team Total or Average23131000.8733.6113782183654330100.00002320000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexandre TexierHusky (MTL)LW241999-09-13No186 Lbs6 ft1NoNoNo5RFAPro & Farm1,200,000$0$0$No
Austin StrandHusky (MTL)D261997-02-17Yes215 Lbs6 ft3NoNoNo4RFAPro & Farm850,000$0$0$No
Braden HoltbyHusky (MTL)G341989-09-16No215 Lbs6 ft1NoNoNo1UFAPro & Farm750,000$0$0$No
Brady KeeperHusky (MTL)D261996-10-12Yes197 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$0$0$No
Brandon GignacHusky (MTL)C251997-10-12Yes172 Lbs5 ft11NoNoNo2RFAPro & Farm750,000$0$0$No
Carl SoderbergHusky (MTL)C381984-10-12No210 Lbs6 ft3NoNoNo1UFAPro & Farm2,200,000$0$0$No
Chris DriedgerHusky (MTL)G291994-05-18No208 Lbs6 ft4NoNoNo5UFAPro & Farm850,000$0$0$No
Dmitrij JaskinHusky (MTL)RW301993-03-23No216 Lbs6 ft2NoNoNo4UFAPro & Farm800,000$0$0$No
Filip ChlapikHusky (MTL)C261997-06-03No194 Lbs6 ft2NoNoNo4RFAPro & Farm750,000$0$0$No
Jake GardinerHusky (MTL)D331990-07-04No203 Lbs6 ft2NoNoNo3UFAPro & Farm900,000$0$0$No
Jansen HarkinsHusky (MTL)LW261997-05-23Yes197 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$0$0$No
Jayden HalbgewachsHusky (MTL)LW261997-03-22Yes160 Lbs5 ft8NoNoNo3RFAPro & Farm750,000$0$0$No
Kasperi KapanenHusky (MTL)RW271996-07-23No194 Lbs6 ft1NoNoNo2RFAPro & Farm1,750,000$0$0$No
Keith KinkaidHusky (MTL)G341989-07-04No195 Lbs6 ft2NoNoNo4UFAPro & Farm850,000$0$0$No
MacKenzie MacEachernHusky (MTL)LW291994-03-09No193 Lbs6 ft2NoNoNo5UFAPro & Farm800,000$0$0$No
Michael SgarbossaHusky (MTL)C311992-07-25No179 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$0$0$No
Nikolay GoldobinHusky (MTL)RW271995-10-07No196 Lbs5 ft11NoNoNo2RFAPro & Farm800,000$0$0$No
Oliver Ekman-LarssonHusky (MTL)D321991-07-17No200 Lbs6 ft2NoNoNo5UFAPro & Farm2,500,000$0$0$No
Parker KellyHusky (MTL)RW241999-05-14Yes190 Lbs6 ft0NoNoNo4RFAPro & Farm900,000$0$0$No
Robbie RussoHusky (MTL)D291993-10-12No189 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$0$0$No
Ryan JohansenHusky (MTL)C311992-07-31No218 Lbs6 ft3NoNoNo1UFAPro & Farm4,000,000$0$0$No
Ryan MurphyHusky (MTL)D291993-10-12No185 Lbs5 ft11NoNoNo3UFAPro & Farm800,000$0$0$No
Sean CouturierHusky (MTL)C301992-12-07No211 Lbs6 ft3NoNoNo2UFAPro & Farm7,000,000$0$0$No
Semyon Der-ArguchintsevHusky (MTL)C232000-09-15Yes173 Lbs5 ft10NoNoNo5RFAPro & Farm800,000$0$0$No
Viktor SvedbergHusky (MTL)D311991-10-12No238 Lbs6 ft8NoNoNo1UFAPro & Farm750,000$0$0$No
Xavier OuelletHusky (MTL)D301993-07-29No199 Lbs6 ft0NoNoNo3UFAPro & Farm900,000$0$0$No
Yakov TreninHusky (MTL)LW261997-01-13No201 Lbs6 ft2NoNoNo4RFAPro & Farm1,500,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2728.74198 Lbs6 ft13.111,350,926$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Carl Soderberg35122
2Jansen HarkinsSean CouturierParker Kelly30122
3Filip Chlapik25122
4Parker Kelly10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
135122
2Robbie RussoRyan Murphy30122
325122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Carl Soderberg55122
2Jansen HarkinsSean CouturierParker Kelly45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Robbie RussoRyan Murphy45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
2Parker KellyJansen Harkins45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Robbie RussoRyan Murphy45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Robbie RussoRyan Murphy45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
2Parker KellyJansen Harkins45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Robbie RussoRyan Murphy45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Carl Soderberg
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Carl Soderberg
Extra Forwards
Normal PowerPlayPenalty Kill
, Filip Chlapik, Carl Soderberg, Filip ChlapikCarl Soderberg
Extra Defensemen
Normal PowerPlayPenalty Kill
Robbie Russo, Ryan Murphy, Robbie RussoRyan Murphy,
Penalty Shots
, , Parker Kelly, Jansen Harkins, Carl Soderberg
Goalie
#1 : Keith Kinkaid, #2 : Chris Driedger


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracudas2200000010462200000010460000000000041.000101828002775711632984895188301217279555.56%60100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
2Bayou44000000201282200000011832200000094581.000203555002775711135298489518811252236717529.41%9188.89%042283150.78%44587550.86%39272454.14%9475901095363722362
3Chiwawa20200000311-80000000000020200000311-800.000369002775711542984895188742510302150.00%5260.00%042283150.78%44587550.86%39272454.14%9475901095363722362
4CoolFm11000000413000000000001100000041321.0004812002775711302984895188210012200.00%000.00%042283150.78%44587550.86%39272454.14%9475901095363722362
5Farmers220000001293110000009721100000032141.000121830002775711572984895188752710334375.00%5180.00%042283150.78%44587550.86%39272454.14%9475901095363722362
6Goons1010000045-1000000000001010000045-100.000461000277571125298489518837111218100.00%6266.67%042283150.78%44587550.86%39272454.14%9475901095363722362
7Grizzlies22000000963000000000002200000096341.000914230027757115829848951884620924400.00%2150.00%042283150.78%44587550.86%39272454.14%9475901095363722362
8Igloos21100000761110000006421010000012-120.500711180027757115829848951884513223013215.38%60100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
9Marlies1010000047-31010000047-30000000000000.00045900277571133298489518837921811100.00%110.00%042283150.78%44587550.86%39272454.14%9475901095363722362
10Marmots1000010023-11000010023-10000000000010.50023500277571133298489518838144184125.00%20100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
11Predateurs11000000532110000005320000000000021.000591400277571132298489518846118135120.00%4175.00%042283150.78%44587550.86%39272454.14%9475901095363722362
12Raptors21100000981000000000002110000098120.50091423002775711532984895188744218337114.29%9366.67%242283150.78%44587550.86%39272454.14%9475901095363722362
13Rockets1010000025-31010000025-30000000000000.0002240027757111729848951883154125120.00%20100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
14Saguenéens3020100069-32020000037-41000100032120.3336121810277571182298489518888331654500.00%8362.50%042283150.78%44587550.86%39272454.14%9475901095363722362
15Scorpions220000001174110000006421100000053241.00011182900277571167298489518867224326116.67%2150.00%042283150.78%44587550.86%39272454.14%9475901095363722362
16Smirnoff Ice211000007611010000012-11100000064220.5007121900277571151298489518851204196116.67%20100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
17Snowbirds22000000918220000009180000000000041.0009182701277571147298489518829100334250.00%000.00%042283150.78%44587550.86%39272454.14%9475901095363722362
18Spartans31100100810-21010000046-22100010044030.50081220002775711772984895188711924448225.00%12466.67%042283150.78%44587550.86%39272454.14%9475901095363722362
19Supreme20200000410-60000000000020200000410-600.00045900277571148298489518863221640300.00%8450.00%142283150.78%44587550.86%39272454.14%9475901095363722362
20Thugs11000000523000000000001100000052321.000591400277571138298489518841159185120.00%20100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
21TigersCats11000000532110000005320000000000021.000581300277571132298489518836610152150.00%50100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
Total46251801200174152222313900100948014231290110080728540.5871742944681127757111313298489518813214572877181303526.92%1192876.47%342283150.78%44587550.86%39272454.14%9475901095363722362
23Twins1010000035-21010000035-20000000000000.0003580027757112829848951883751912000.00%5260.00%042283150.78%44587550.86%39272454.14%9475901095363722362
24Vandals1010000012-11010000012-10000000000000.000123002775711152984895188228022200.00%000.00%042283150.78%44587550.86%39272454.14%9475901095363722362
25Vipers11000000725000000000001100000072521.000713200027757113329848951882582203133.33%10100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
26Warriors21100000752110000005231010000023-120.50071320002775711642984895188612812353133.33%60100.00%042283150.78%44587550.86%39272454.14%9475901095363722362
27Wolves3120000010100211000008711010000023-120.333101828002775711832984895188642032399444.44%11281.82%042283150.78%44587550.86%39272454.14%9475901095363722362
_Since Last GM Reset46251801200174152222313900100948014231290110080728540.5871742944681127757111313298489518813214572877181303526.92%1192876.47%342283150.78%44587550.86%39272454.14%9475901095363722362
_Vs Conference1696001006356784300100343318530000029236190.59463100163002775711458298489518847815389234451124.44%37586.49%042283150.78%44587550.86%39272454.14%9475901095363722362
_Vs Division4220000015123110000006423120000098140.500152540002775711113298489518810324346016212.50%12283.33%042283150.78%44587550.86%39272454.14%9475901095363722362

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4654W21742944681313132145728771811
All Games
GPWLOTWOTL SOWSOLGFGA
4625181200174152
Home Games
GPWLOTWOTL SOWSOLGFGA
2313901009480
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2312911008072
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1303526.92%1192876.47%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
29848951882775711
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
42283150.78%44587550.86%39272454.14%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
9475901095363722362


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2023-10-154Twins5Husky3LBoxScore
2 - 2023-10-1625Husky5Raptors3WBoxScore
4 - 2023-10-1842Wolves5Husky4LBoxScore
5 - 2023-10-1957Husky5Bayou3WBoxScore
6 - 2023-10-2072Scorpions4Husky6WBoxScore
7 - 2023-10-2188Husky5Thugs2WBoxScore
9 - 2023-10-23102Saguenéens3Husky1LBoxScore
11 - 2023-10-25127Marmots3Husky2LXBoxScore
13 - 2023-10-27147Husky1Supreme4LBoxScore
14 - 2023-10-28158Husky5Grizzlies3WBoxScore
15 - 2023-10-29170Bayou4Husky6WBoxScore
16 - 2023-10-30188Barracudas3Husky5WBoxScore
17 - 2023-10-31201Husky1Spartans2LXBoxScore
18 - 2023-11-01219Smirnoff Ice2Husky1LBoxScore
19 - 2023-11-02227Husky4CoolFm1WBoxScore
21 - 2023-11-04250Snowbirds1Husky6WBoxScore
22 - 2023-11-05253Husky2Chiwawa4LBoxScore
23 - 2023-11-06277Husky4Bayou1WBoxScore
24 - 2023-11-07292Saguenéens4Husky2LBoxScore
25 - 2023-11-08306Husky3Saguenéens2WXBoxScore
27 - 2023-11-10321Snowbirds0Husky3WBoxScore
28 - 2023-11-11333Husky3Supreme6LBoxScore
29 - 2023-11-12352Farmers7Husky9WBoxScore
31 - 2023-11-14375Spartans6Husky4LBoxScore
32 - 2023-11-15391Husky5Scorpions3WBoxScore
34 - 2023-11-17405Igloos4Husky6WBoxScore
35 - 2023-11-18424Husky1Igloos2LBoxScore
36 - 2023-11-19439TigersCats3Husky5WBoxScore
37 - 2023-11-20458Barracudas1Husky5WBoxScore
39 - 2023-11-22468Husky4Grizzlies3WBoxScore
40 - 2023-11-23488Husky6Smirnoff Ice4WBoxScore
41 - 2023-11-24498Husky1Chiwawa7LBoxScore
42 - 2023-11-25508Marlies7Husky4LBoxScore
43 - 2023-11-26525Husky3Farmers2WBoxScore
44 - 2023-11-27541Predateurs3Husky5WBoxScore
45 - 2023-11-28562Rockets5Husky2LBoxScore
46 - 2023-11-29571Husky4Raptors5LBoxScore
47 - 2023-11-30593Warriors2Husky5WBoxScore
48 - 2023-12-01608Husky2Wolves3LBoxScore
49 - 2023-12-02622Husky3Spartans2WBoxScore
50 - 2023-12-03631Bayou4Husky5WBoxScore
52 - 2023-12-05653Vandals2Husky1LBoxScore
53 - 2023-12-06665Husky2Warriors3LBoxScore
54 - 2023-12-07681Husky4Goons5LBoxScore
55 - 2023-12-08693Wolves2Husky4WBoxScore
56 - 2023-12-09711Husky7Vipers2WBoxScore
57 - 2023-12-10722Twins-Husky-
58 - 2023-12-11738Husky-Hunters-
59 - 2023-12-12753Hunters-Husky-
60 - 2023-12-13764Husky-Marlies-
62 - 2023-12-15785CoolFm-Husky-
63 - 2023-12-16800Husky-Bandits-
64 - 2023-12-17814Husky-Rockets-
65 - 2023-12-18820Husky-Predateurs-
66 - 2023-12-19831Thugs-Husky-
68 - 2023-12-21853Bandits-Husky-
69 - 2023-12-22873Husky-Snowbirds-
70 - 2023-12-23882Husky-Outlaws-
71 - 2023-12-24894Supreme-Husky-
73 - 2023-12-26913Xpress-Husky-
74 - 2023-12-27929Husky-Barracudas-
76 - 2023-12-29947Vandals-Husky-
77 - 2023-12-30954Husky-Xpress-
78 - 2023-12-31967Husky-Vandals-
79 - 2024-01-01982Outlaws-Husky-
80 - 2024-01-021003Husky-Igloos-
81 - 2024-01-031018Vipers-Husky-
83 - 2024-01-051037Husky-Marmots-
84 - 2024-01-061046Grizzlies-Husky-
86 - 2024-01-081069Husky-Outlaws-
87 - 2024-01-091080Marmots-Husky-
Trade Deadline --- Trades can’t be done after this day is simulated!
89 - 2024-01-111095Husky-CoolFm-
90 - 2024-01-121109Goons-Husky-
92 - 2024-01-141136Chiwawa-Husky-
93 - 2024-01-151144Husky-Predateurs-
94 - 2024-01-161150Husky-Thugs-
95 - 2024-01-171168Husky-Twins-
96 - 2024-01-181176Vipers-Husky-
98 - 2024-01-201201Goons-Husky-
102 - 2024-01-241225Husky-TigersCats-
103 - 2024-01-251238Scorpions-Husky-
107 - 2024-01-291256Raptors-Husky-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance45,88122,878
Attendance PCT99.74%99.47%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
18 2990 - 99.65% 101,687$2,338,806$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,246,972$ 3,647,500$ 3,647,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,711,836$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,830,370$ 53 42,638$ 2,259,814$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582303803335272306-3441161901221138152-1441141902114134154-208027246073212511001159226856577791144234077159812402384217.65%2527769.44%4638147743.20%697151146.13%582133843.50%1826120219056421233607
4646251801200174152222313900100948014231290110080728541742944681127757111313298489518813214572877181303526.92%1192876.47%342283150.78%44587550.86%39272454.14%9475901095363722362
Total Regular Season128555604535446458-1264292801321232232064262803214214226-121344467541200237817518610358186312661429523661122888519583687720.92%37110571.70%71060230845.93%1142238647.86%974206247.24%27741792300010061956970