Association Québécoise de Hockey Simulé - Snowbirds 

Snowbirds

GP: 45 | W: 22 | L: 21 | OTL: 2 | P: 46
GF: 165 | GA: 168 | PP%: 28.06% | PK%: 62.50%
GM : Matthew Gagne | Morale : 90 | Team Overall : 58
Next Games #714 vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Shane PintoX100.00654589837280996382557063708275090690
2Quinton Byfield (R)X100.00684580808670646277695565698071090670
3Beck Malenstyn (R)X100.00854592777250404930445464508572090580
4Zac DalpeX100.00634592796850405330485856669380090570
5Filip Hallander (R)X100.00504595776350404530405079508269090560
6Jackson CatesX100.00504595776150404530405061508572090540
7Adam Brooks (R)X100.00504595785650404530405055508774090530
8Marc McLaughlin (R)X100.00504592756750404530405056508370090530
9Bobby Brink (R)X100.00504595804150404530405055508269090520
10Matt GrzelcykX100.00614585874572916030645770688980090680
11Luke Hughes (R)X100.00504595795768405030445655657969090580
12Jeremy Davies (R)X100.00504592784950404530405059508673090560
13Wyatt KalynukX100.00504595785350404530405055508673090560
14Reilly Walsh (R)X100.00504595785350404530405055508471090560
15Sami NikuX100.00504595795150404530405055508774090560
Scratches
1Connor McMichael (R)X100.00504888785650404530405061508269090530
2Ryan DzingelX100.00504595776150404530405055509178090530
TEAM AVERAGE100.0055459279595548493645536055857309057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram (R)100.0073619186707773777070708578090660
2Michael Houser100.0070404083656565656565658976090580
Scratches
1Allen York100.0070404085656565656565658880090580
TEAM AVERAGE100.007147578567696869676767877809061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Patrick Roy65656565927456CAN5732,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Quinton ByfieldSnowbirds (MIA)C40282553-12605262151638118.54%2173818.467101716460004634363.21%7233331011.4413000452
2Filip HallanderSnowbirds (MIA)C45121830-1100344581254714.81%2270115.58268834000061035.16%1821629000.8600000034
3Zac DalpeSnowbirds (MIA)C39151429-3754350107317914.02%1456914.600000170000190250.44%3393111001.0211010123
4Shane PintoSnowbirds (MIA)C231315282404044125467810.40%1851022.1844812470005303064.53%4992211011.1002000603
5Beck MalenstynSnowbirds (MIA)LW35171027-5605037103396516.50%1455215.77861421450002344044.44%453022000.9801000304
6Dylan HollowayMiami HeatLW211113240160342697245811.34%1243020.5163924510000181241.67%24208011.1102000332
7Marc McLaughlinSnowbirds (MIA)LW45121123-320343162174419.35%2264814.401125290000101048.48%331720000.7100000124
8Jackson CatesSnowbirds (MIA)C454812-72024386126396.56%1261513.68000017000020053.66%411616000.3900000130
9Bobby BrinkSnowbirds (MIA)RW146612417519122642123.08%623817.03134224000001029.41%1736001.0100100010
10Wyatt KalynukSnowbirds (MIA)D32077-114101529206110.00%2757518.00011433000022000.00%0521000.2400002000
11Reilly WalshSnowbirds (MIA)D35167-142011312410104.17%2964518.4311215000002100100.00%1724000.2200000010
12Justin AugerMiami HeatRW1824620013172913146.90%333018.35112436000060034.78%23710000.3600000001
13Matt GrzelcykSnowbirds (MIA)D424630064137515.38%79824.6711231100013000.00%0211001.2200000000
14Jeremy DaviesSnowbirds (MIA)D3705508015223010120.00%2762316.85011427000021000.00%1532000.1600000000
15Luke HughesSnowbirds (MIA)D14044-300615204140.00%2434224.48011536000015000.00%0612000.2300000000
16Dominic TurgeonMiami HeatRW11134040821951211.11%219417.64011423000001033.33%1257000.4100000000
17Ryan DzingelSnowbirds (MIA)C23123-2201418163146.25%928412.38000030001130046.67%1584000.2100000010
18Ville HeinolaMiami HeatD6112-6003391411.11%811919.9201121200004000.00%024000.3300000000
19Sami NikuSnowbirds (MIA)D11022-30071710530.00%825523.22000123000111000.00%037000.1600000000
20Connor McMichaelSnowbirds (MIA)C20011-140101214340.00%1132716.37000112000060040.00%527000.0600000010
21Brendan GuhleMiami HeatD4101-1002761116.67%79824.6310121100004000.00%015000.2000000000
Team Total or Average522127159286-4012420440541101334361612.54%303889917.053341741195970001431816756.58%1960241298030.6429112192223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor IngramSnowbirds (MIA)38201620.8803.352273011271062511010.7504380240
2Brandon HalversonMiami Heat33000.9292.001800068550000.000036000
3Michael HouserSnowbirds (MIA)83400.8723.694390027211114100.0000720101
Team Total or Average49262020.8823.322892011601358675110.75044826341


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam BrooksSnowbirds (MIA)C271996-05-06Yes179 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$0$0$No
Allen YorkSnowbirds (MIA)G321990-10-12No188 Lbs6 ft3NoNoNo1UFAPro & Farm1,000,000$0$0$No
Beck MalenstynSnowbirds (MIA)LW251998-02-04Yes200 Lbs6 ft3NoNoNo2RFAPro & Farm800,000$0$0$No
Bobby BrinkSnowbirds (MIA)RW222001-07-08Yes166 Lbs5 ft8NoNoNo3RFAPro & Farm1,000,000$0$0$No
Connor IngramSnowbirds (MIA)G261997-03-31Yes196 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$0$0$No
Connor McMichaelSnowbirds (MIA)C222001-01-15Yes180 Lbs6 ft0NoNoNo4RFAPro & Farm2,000,000$0$0$No
Filip HallanderSnowbirds (MIA)C232000-06-29Yes190 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$No
Jackson CatesSnowbirds (MIA)C261997-09-26No190 Lbs6 ft0NoNoNo1RFAPro & Farm950,000$0$0$No
Jeremy DaviesSnowbirds (MIA)D261996-12-04Yes180 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$0$0$No
Luke HughesSnowbirds (MIA)D202003-09-09Yes184 Lbs6 ft2NoNoNo5RFAPro & Farm1,200,000$0$0$No
Marc McLaughlinSnowbirds (MIA)LW241999-07-26Yes203 Lbs6 ft0NoNoNo1RFAPro & Farm950,000$0$0$No
Matt GrzelcykSnowbirds (MIA)D291994-01-05No176 Lbs5 ft10NoNoNo1UFAPro & Farm3,500,000$0$0$No
Michael HouserSnowbirds (MIA)G311992-09-13No185 Lbs6 ft1NoNoNo4UFAPro & Farm2,000,000$0$0$No
Quinton ByfieldSnowbirds (MIA)C212002-08-19Yes220 Lbs6 ft5NoNoNo4RFAPro & Farm3,000,000$0$0$No
Reilly WalshSnowbirds (MIA)D241999-04-21Yes185 Lbs6 ft0NoNoNo3RFAPro & Farm850,000$0$0$No
Ryan DzingelSnowbirds (MIA)C311992-03-09No190 Lbs6 ft0NoNoNo1UFAPro & Farm775,000$0$0$No
Sami NikuSnowbirds (MIA)D261996-10-10No176 Lbs6 ft1NoNoNo1RFAPro & Farm1,000,000$0$0$No
Shane PintoSnowbirds (MIA)C222000-11-12No201 Lbs6 ft3NoNoNo3RFAPro & Farm2,500,000$0$0$No
Wyatt KalynukSnowbirds (MIA)D261997-04-14No180 Lbs6 ft1NoNoNo3RFAPro & Farm1,000,000$0$0$No
Zac DalpeSnowbirds (MIA)C331989-11-01No197 Lbs6 ft2NoNoNo1UFAPro & Farm3,000,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2025.80188 Lbs6 ft12.401,441,250$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
135122
2Beck MalenstynQuinton ByfieldFilip Hallander30122
3Marc McLaughlinJackson Cates25122
4Filip HallanderQuinton Byfield10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
135122
2Reilly WalshWyatt Kalynuk30122
325122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
2Beck MalenstynQuinton ByfieldFilip Hallander45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Reilly WalshWyatt Kalynuk45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Quinton Byfield55122
2Beck Malenstyn45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Reilly WalshWyatt Kalynuk45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
2Quinton Byfield45122Reilly WalshWyatt Kalynuk45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Quinton Byfield55122
2Beck Malenstyn45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Reilly WalshWyatt Kalynuk45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Jackson Cates, , Jackson Cates
Extra Defensemen
Normal PowerPlayPenalty Kill
, Reilly Walsh, Wyatt KalynukReilly Walsh, Wyatt Kalynuk
Penalty Shots
, Quinton Byfield, , Beck Malenstyn,
Goalie
#1 : Connor Ingram, #2 : Michael Houser


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bandits312000001013-3211000007701010000036-320.3331013230019677469030444450720943186213215.38%4325.00%048681659.56%42176954.75%40873955.21%9475861028372745374
2Barracudas1010000024-21010000024-20000000000000.0002460019677461930444450720209196600.00%20100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
3Bayou1010000037-4000000000001010000037-400.00035800196774630304444507203411612300.00%330.00%048681659.56%42176954.75%40873955.21%9475861028372745374
4Chiwawa11000000624110000006240000000000021.0006101600196774631304444507202611294125.00%10100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
5CoolFm11000000211110000002110000000000021.00024600196774629304444507202711614100.00%30100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
6Farmers1010000025-31010000025-30000000000000.0002350019677463330444450720239614000.00%3166.67%048681659.56%42176954.75%40873955.21%9475861028372745374
7Goons21100000770110000003121010000046-220.50071017001967746663044445072074288326233.33%4175.00%048681659.56%42176954.75%40873955.21%9475861028372745374
8Grizzlies20001001990200010019900000000000030.750913220019677464430444450720732181910330.00%4175.00%048681659.56%42176954.75%40873955.21%9475861028372745374
9Hunters3110100010100110000003212010100078-140.66710162600196774663304444507208330134510220.00%4175.00%048681659.56%42176954.75%40873955.21%9475861028372745374
10Husky2020000019-8000000000002020000019-800.00012300196774629304444507204717833000.00%4250.00%048681659.56%42176954.75%40873955.21%9475861028372745374
11Igloos1010000003-3000000000001010000003-300.000000001967746173044445072018788100.00%40100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
12Marlies2110000078-12110000078-10000000000020.500711180019677464130444450720583310333266.67%5340.00%048681659.56%42176954.75%40873955.21%9475861028372745374
13Marmots21000010752110000005411000001021141.000710170019677466330444450720611613264250.00%4175.00%048681659.56%42176954.75%40873955.21%9475861028372745374
14Outlaws1010000034-1000000000001010000034-100.00035800196774627304444507202454152150.00%20100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
15Predateurs2010001010100100000105411010000056-120.50010162600196774661304444507205411172615320.00%6183.33%048681659.56%42176954.75%40873955.21%9475861028372745374
16Raptors1010000046-21010000046-20000000000000.0004711001967746323044445072038913722100.00%4325.00%048681659.56%42176954.75%40873955.21%9475861028372745374
17Rockets2110000012481100000011291010000012-120.5001219310019677464930444450720441923411654.55%110.00%048681659.56%42176954.75%40873955.21%9475861028372745374
18Saguenéens2110000089-11010000048-41100000041320.500814220019677467230444450720712828359333.33%4250.00%048681659.56%42176954.75%40873955.21%9475861028372745374
19Scorpions21100000710-321100000710-30000000000020.5007101700196774659304444507208731631200.00%3166.67%048681659.56%42176954.75%40873955.21%9475861028372745374
20Smirnoff Ice11000000303110000003030000000000021.0003580119677463230444450720246213200.00%10100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
21Spartans2200000013310110000006241100000071641.000132336001967746643044445072053218249444.44%40100.00%048681659.56%42176954.75%40873955.21%9475861028372745374
22Supreme11000000321000000000001100000032121.0003690019677462830444450720315412100.00%2150.00%048681659.56%42176954.75%40873955.21%9475861028372745374
23Thugs1010000023-1000000000001010000023-100.000246001967746283044445072028111118300.00%3166.67%048681659.56%42176954.75%40873955.21%9475861028372745374
24TigersCats2020000048-4000000000002020000048-400.00047110019677463930444450720722618342150.00%9455.56%048681659.56%42176954.75%40873955.21%9475861028372745374
Total45172103121165168-3231280101197871022513021106881-13460.51116526442901196774612653044445072013104552626441393928.06%963662.50%048681659.56%42176954.75%40873955.21%9475861028372745374
26Twins2100100012840000000000021001000128441.000121729001967746713044445072053228298112.50%4175.00%048681659.56%42176954.75%40873955.21%9475861028372745374
27Vipers211000001013-310100000510-51100000053220.5001018280019677467130444450720451320276233.33%5340.00%048681659.56%42176954.75%40873955.21%9475861028372745374
28Warriors11000000624110000006240000000000021.0006101600196774636304444507202511613300.00%3233.33%048681659.56%42176954.75%40873955.21%9475861028372745374
29Xpress1000010023-1000000000001000010023-110.50022400196774641304444507202330133266.67%000.00%048681659.56%42176954.75%40873955.21%9475861028372745374
_Since Last GM Reset45172103121165168-3231280101197871022513021106881-13460.51116526442901196774612653044445072013104552626441393928.06%963662.50%048681659.56%42176954.75%40873955.21%9475861028372745374
_Vs Conference19890101083812935000103946-710540100044359200.5268313922200196774659330444450720564187146251701724.29%431662.79%048681659.56%42176954.75%40873955.21%9475861028372745374
_Vs Division10640000043358633000002728-1431000001679120.60043741170019677463143044445072033411672136301033.33%21861.90%048681659.56%42176954.75%40873955.21%9475861028372745374

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4546L11652644291265131045526264401
All Games
GPWLOTWOTL SOWSOLGFGA
4517213121165168
Home Games
GPWLOTWOTL SOWSOLGFGA
2312810119787
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2251321106881
Last 10 Games
WLOTWOTL SOWSOL
342010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1393928.06%963662.50%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
304444507201967746
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48681659.56%42176954.75%40873955.21%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
9475861028372745374


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2023-10-1513Bandits2Snowbirds4WBoxScore
2 - 2023-10-1626Snowbirds7Twins6WXBoxScore
4 - 2023-10-1845Warriors2Snowbirds6WBoxScore
6 - 2023-10-2067Marlies3Snowbirds4WBoxScore
8 - 2023-10-2291Snowbirds1Hunters3LBoxScore
9 - 2023-10-2398Grizzlies6Snowbirds5LXXBoxScore
10 - 2023-10-24114Snowbirds2Marmots1WXXBoxScore
11 - 2023-10-25130CoolFm1Snowbirds2WBoxScore
12 - 2023-10-26144Snowbirds3TigersCats5LBoxScore
14 - 2023-10-28160Scorpions4Snowbirds6WBoxScore
15 - 2023-10-29176Snowbirds1Rockets2LBoxScore
16 - 2023-10-30184Snowbirds5Twins2WBoxScore
17 - 2023-10-31196Snowbirds2Xpress3LXBoxScore
18 - 2023-11-01210Goons1Snowbirds3WBoxScore
19 - 2023-11-02231Vipers10Snowbirds5LBoxScore
21 - 2023-11-04250Snowbirds1Husky6LBoxScore
22 - 2023-11-05262Barracudas4Snowbirds2LBoxScore
23 - 2023-11-06280Raptors6Snowbirds4LBoxScore
24 - 2023-11-07289Snowbirds3Outlaws4LBoxScore
26 - 2023-11-09308Snowbirds3Bandits6LBoxScore
27 - 2023-11-10321Snowbirds0Husky3LBoxScore
28 - 2023-11-11334Hunters2Snowbirds3WBoxScore
29 - 2023-11-12350Snowbirds7Spartans1WBoxScore
30 - 2023-11-13363Chiwawa2Snowbirds6WBoxScore
31 - 2023-11-14382Farmers5Snowbirds2LBoxScore
33 - 2023-11-16399Snowbirds5Predateurs6LBoxScore
34 - 2023-11-17406Snowbirds3Supreme2WBoxScore
35 - 2023-11-18419Scorpions6Snowbirds1LBoxScore
36 - 2023-11-19440Rockets2Snowbirds11WBoxScore
37 - 2023-11-20456Snowbirds4Saguenéens1WBoxScore
39 - 2023-11-22476Saguenéens8Snowbirds4LBoxScore
41 - 2023-11-24497Snowbirds4Goons6LBoxScore
42 - 2023-11-25507Snowbirds1TigersCats3LBoxScore
43 - 2023-11-26521Bandits5Snowbirds3LBoxScore
44 - 2023-11-27542Spartans2Snowbirds6WBoxScore
45 - 2023-11-28563Snowbirds2Thugs3LBoxScore
46 - 2023-11-29572Predateurs4Snowbirds5WXXBoxScore
47 - 2023-11-30587Snowbirds5Vipers3WBoxScore
48 - 2023-12-01602Marmots4Snowbirds5WBoxScore
49 - 2023-12-02620Snowbirds3Bayou7LBoxScore
50 - 2023-12-03628Snowbirds0Igloos3LBoxScore
51 - 2023-12-04642Grizzlies3Snowbirds4WXBoxScore
53 - 2023-12-06664Smirnoff Ice0Snowbirds3WBoxScore
54 - 2023-12-07679Snowbirds6Hunters5WXBoxScore
55 - 2023-12-08696Marlies5Snowbirds3LBoxScore
57 - 2023-12-10714Snowbirds-Wolves-
58 - 2023-12-11729Smirnoff Ice-Snowbirds-
59 - 2023-12-12743Snowbirds-Smirnoff Ice-
60 - 2023-12-13759Snowbirds-Thugs-
61 - 2023-12-14772Xpress-Snowbirds-
63 - 2023-12-16792Twins-Snowbirds-
64 - 2023-12-17805Snowbirds-Grizzlies-
65 - 2023-12-18821Warriors-Snowbirds-
67 - 2023-12-20843Thugs-Snowbirds-
68 - 2023-12-21856Snowbirds-Vandals-
69 - 2023-12-22873Husky-Snowbirds-
71 - 2023-12-24892Snowbirds-Xpress-
72 - 2023-12-25906Chiwawa-Snowbirds-
73 - 2023-12-26916Snowbirds-Smirnoff Ice-
75 - 2023-12-28935Snowbirds-Marlies-
76 - 2023-12-29945Bayou-Snowbirds-
77 - 2023-12-30965TigersCats-Snowbirds-
78 - 2023-12-31979Snowbirds-Marmots-
80 - 2024-01-02998Vandals-Snowbirds-
82 - 2024-01-041022Snowbirds-Farmers-
83 - 2024-01-051031Snowbirds-Chiwawa-
84 - 2024-01-061044CoolFm-Snowbirds-
85 - 2024-01-071061Igloos-Snowbirds-
88 - 2024-01-101088Igloos-Snowbirds-
Trade Deadline --- Trades can’t be done after this day is simulated!
89 - 2024-01-111103Snowbirds-Warriors-
90 - 2024-01-121117Wolves-Snowbirds-
91 - 2024-01-131127Snowbirds-Barracudas-
92 - 2024-01-141137Snowbirds-Farmers-
94 - 2024-01-161155Outlaws-Snowbirds-
95 - 2024-01-171160Snowbirds-Rockets-
97 - 2024-01-191184Supreme-Snowbirds-
98 - 2024-01-201194Snowbirds-Twins-
99 - 2024-01-211202Snowbirds-Raptors-
101 - 2024-01-231220Snowbirds-Scorpions-
102 - 2024-01-241222Vipers-Snowbirds-
106 - 2024-01-281249Goons-Snowbirds-
107 - 2024-01-291261Snowbirds-CoolFm-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity30002000
Ticket Price3515
Attendance68,77945,746
Attendance PCT99.68%99.45%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
18 4979 - 99.59% 161,398$3,712,146$5000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,770,364$ 2,882,500$ 2,882,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,462,480$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,905,158$ 53 49,381$ 2,617,193$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582283801951265302-3741122001431138158-2041161800520127144-177826543169601441081078223150383488235237985550411912316226.84%1935670.98%6748156047.95%777153350.68%631132847.52%165899219556821352673
4645172103121165168-3231280101197871022513021106881-134616526442901196774612653044445072013104552626441393928.06%963662.50%048681659.56%42176954.75%40873955.21%9475861028372745374
Total Regular Season1274559041072430470-4064242802442235245-1063213102630195225-3012443069511250263175181143496807127813895536891310766183537010127.30%2899268.17%61234237651.94%1198230252.04%1039206750.27%260515792983105520971047